ATom: Simulated Data Stream for Modeling ATom-like Measurements
This dataset provides a simulated data stream representative of an Atmospheric Tomography mission (ATom) data collection flight and also modeled reactivities for ozone (O3) production and loss and methane (CH4) loss from six global atmospheric chemistry models: CAM, GEOS-Chem, GFDL, GISS-E2.1, GMI, and UCI. The simulated data include concentrations of selected atmospheric trace gases for 14,880 air parcels along a simulated north-south ATom flight path along 180-degrees longitude over the Pacific basin. Each of the six models produced ozone production and loss and methane loss reactivities initialized using the simulated data beginning with five different days in August (8-01, 8-06, 8-11, 8-16, 8-21). Modeled years for each individual model varied from 1997 to 2016.
Related Publications:
Michael J. Prather, Clare M. Flynn, Xin Zhu, Stephen D. Steenrod, Sarah A. Strode, Arlene M. Fiore, Gustavo Correa, Lee T. Murray, Jean-Francois Lamarque. 2018. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition? Atmospheric Measurement Techniques. https://dx.doi.org/10.5194/amt-2017-470
Michael J. Prather, Xin Zhu, Clare M. Flynn, Sarah A. Strode, Jose M. Rodriguez, Stephen D. Steenrod, Junhua Liu, Jean-Francois Lamarque, Arlene M. Fiore, Larry W. Horowitz, Jingqiu Mao, Lee T. Murray, Drew T. Shindell, and Steven C. Wofsy. 2018. Global atmospheric chemistry – which air matters? Atmos. Chem. Phys., 17, 9081-9102. https://dx.doi.org/10.5194/acp-17-9081-2017
See all data from the Atmospheric Tomography Mission (ATom)
Data Citation: Prather, M.J., C.M. Flynn, A. Fiore, G. Correa, S.A. Strode, S.D. Steenrod, L.T. Murray, and J.-F. Lamarque. 2018. ATom: Simulated Data Stream for Modeling ATom-like Measurements. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1597
Data Center: ORNL DAAC
Sponsor: NASA EOSDIS